m at h . C A ] 1 2 M ay 2 00 4 ON MODULAR INEQUALITIES IN VARIABLE L p SPACES
نویسنده
چکیده
We show that the Hardy-Littlewood maximal operator and a class of Calderón-Zygmund singular integrals satisfy the strong type modular inequality in variable L spaces if and only if the variable exponent p(x) ∼ const.
منابع مشابه
Some functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition
Some functional inequalities in variable exponent Lebesgue spaces are presented. The bi-weighted modular inequality with variable exponent $p(.)$ for the Hardy operator restricted to non- increasing function which is$$int_0^infty (frac{1}{x}int_0^x f(t)dt)^{p(x)}v(x)dxleqCint_0^infty f(x)^{p(x)}u(x)dx,$$ is studied. We show that the exponent $p(.)$ for which these modular ine...
متن کاملar X iv : 0 80 5 . 01 58 v 1 [ m at h . FA ] 1 M ay 2 00 8 OPERATOR - VALUED DYADIC BMO SPACES
We consider BMO spaces of operator-valued functions, among them the space of operator-valued functions B which define a bounded paraproduct on L(H). We obtain several equivalent formulations of ‖πB‖ in terms of the norm of the ”sweep” function of B or of averages of the norms of martingales transforms of B in related spaces. Furthermore, we investigate a connection between John-Nirenberg type i...
متن کاملBessel Type Inequalities in Hilbert C-modules
X iv :0 90 5. 40 67 v1 [ m at h. FA ] 2 5 M ay 2 00 9 BESSEL TYPE INEQUALITIES IN HILBERT C-MODULES S. S. DRAGOMIR, M. KHOSRAVI AND M. S. MOSLEHIAN Abstract. Regarding the generalizations of the Bessel inequality in Hilbert spaces which are due to Bombiari and Boas–Bellman, we obtain a version of the Bessel inequality and some generalizations of this inequality in the framework of Hilbert C∗-mo...
متن کاملar X iv : m at h / 02 04 00 7 v 3 [ m at h . C O ] 1 4 M ay 2 00 2 Fat 4 - polytopes and fatter 3 - spheres
We introduce the fatness parameter of a 4-dimensional polytope P, defined as φ(P) = ( f1 + f2)/( f0 + f3). It arises in an important open problem in 4-dimensional combinatorial geometry: Is the fatness of convex 4polytopes bounded? We describe and analyze a hyperbolic geometry construction that produces 4-polytopes with fatness φ(P) > 5.048, as well as the first infinite family of 2-simple, 2-s...
متن کاملm at h . FA ] 1 5 M ay 2 00 0 BANACH EMBEDDING PROPERTIES OF NON - COMMUTATIVE L p - SPACES
Let N and M be von Neumann algebras. It is proved that L p (N) does not Banach embed in L p (M) for N infinite, M finite, 1 ≤ p < 2. The following considerably stronger result is obtained (which implies this, since the Schatten p-class Cp embeds in L p (N) for N infinite). Theorem. Let 1 ≤ p < 2 and let X be a Banach space with a spanning set (x ij) so that for some C ≥ 1, (i) any row or column...
متن کامل